Open Systems Versus New Technology: A COTS Conundrum

Presented To: National Defense Industrial Association

5th Annual Systems Engineering Conference

21-24 October 2002; Tampa, FL

Presented By: Walter J. (Jim) Hall, Jr.

Senior Staff Engineer

Smiths Aerospace Electronic Systems – Germantown

20501 Goldenrod Lane

Germantown, MD 20876 USA

Ph: +1 301 428 6683 Fax: +1 301 428 6478

Jim.hall@smiths-aerospace.com

Overview

Defining and Open System

The Tri-Service Open Systems Architecture Working Group defines an Open System as:

"...a system that implements sufficient open specifications for interfaces, services, and supporting formats to enable properly engineered components to be utilized across a wide range of systems with minimal changes, to interoperate with other components on local and remote systems, and to interact with users in a style that facilitates portability. An OS is characterized by the following:

"Well defined, widely used, non-proprietary interfaces/protocols, and

"Use of standards which are developed/adopted by industrially recognized standards bodies, and

"Definition of all aspects of system interfaces to facilitate new or additional systems capabilities for a wide range of applications, and

"Explicit provision for expansion or upgrading through the incorporation of additional or higher performance elements with minimal impact on the system."

Smiths Open System Definition

An architecture that allows insertion or extraction of either hardware or software functions with a minimal of design and integration risk and cost. This definition requires:

- 1) A backplane/bus structure that is supported as an industry standard.
- 2) A common form factor for hardware elements (boards).
- 3) A common and simple Application Programmer's Interface for software.
- 4) A common and commercially available software and integration toolset.

Smiths Approach to Realizing an Open System

- Industry Standard Architecture and Form Factor
 - VME64 (6U & 3U)
 - cPCI (6U & 3U)
 - PC/104 Plus
- Industry Standard Operating System
 - VxWorks
- COTS Tools for Software, Integration, and Test
 - WindRiver Tornado

Implied, and critical is that hardware elements and software language used must be supported by industry and tools

The Conundrum

So what's the problem

Most military equipment has requirements that cannot be met within these constraints

- Environment
- Functions
 - Real-Time
 - Unique Interfaces
 - State-of-the-Art Applications (leading COTS)
- Physical
 - Size, Weight, Power
- So we have a conundrum

"a paradoxical, insoluble, or difficult problem; a dilemma."

How Do You Solve the Conundrum

- You don't! But, you almost can.
- Smiths Design Approach
 - Identify the elements that are inconsistent with an Open System and encapsulate them
 - Develop everything else as an Open System
 - Standard Architecture and Form Factor
 - COTS/ROTS Boards
 - VxWorks Real-Time Operating System
 - COTS Tools
 - Embed the unique function in the Open System
 - Minimize the uniqueness as much as possible
 - Minimize the impact of the unique elements

Example - Display Processing

- Requirements
 - Drive 4 Independent Displays
 - Minimize cost, size, weight, power
- Conundrum -
 - Required 5+ COTS Boards
 - 1 Display Channel per Board
 - Requires General Processor
 - OSA Implementation
 - Too large
 - Too expensive

Display Processing Solution 1

- Need to Reduce Size and Cost
 - Reduce the Number of Boards
 - Develop New Graphics Board
 - Team with VME Board Developer
 - Two Graphics Channels per Board
 - Eliminated 2 Graphics Boards
- Open System Effect
 - Graphics Board Fully VME Compliant
 - VxWorks Driver Provided with Board
- Fully Open System Solution

COTS/ROTS OSA
With Specially Developed Board

Display Solution 2

- Same Requirement 4 Independent Displays
- Need Further Reduction in Size & Weight
 - Reduce the Board Count
 - Eliminate Use of CPU
- Solution 2 Displays per Standalone Board
 - Develop PMC That Drives a Display
 (PMC can drive 2 displays)
 - Combine PMC & COTS PowerPC Board
 - Two Board Solution Standalone
- Open System Effect
 - Uses COTS Power PC
 - Standard PMC
 - OpenGL Graphics I/F for Software
 - Unique Driver I/F for Graphics Device

Modified COTS/ROTS OSA
With Unique PMCs and Drivers

Example - Image Processing

The Requirement

- Correlate Sensor Image with Geo-Registered Image
 - Perform Warp/Morph, Rotation, & Correlation
 - Extract Coordinates of Selected Object(s)
- In Real-Time in a Cockpit
- The Conundrum
 - Currently Done On the Ground
 - Non-Real-Time Process (very long)
- The Solution Single Board
 - High-Speed Systolic Processor (HSSP)
 - Embed HSSP on Standard PMC
 - Put HSSP and Graphics PMCs on COTS PowerPC
- Open System Effect
 - Uses COTS Power PC
 - Standard PMCs
 - OpenGL Graphics I/F for Software
 - Unique Driver I/F for Graphics Device and HSSP

Single VME Board Implementation For Real-Time Image Correlation In Military Open System

Example - Video Recording and Compression

The Requirement

- Record 4 Video Channels
- Record 2 Audio Channels
- Reduce Storage (Compress)
- Playback 1 Channel (while recording)
- In Real-Time in a Military Vehicle
- The Conundrum
 - COTS Solutions Too Large
- The Solution Single 3U cPCI Board+
 - Develop a Unique Baseboard
 - Develop a Unique Mezzanine Board
- Open System Effect
 - Standard cPCI Architecture and Form Factor
 - MPEG 2 Standard Compression
 - Unique Board and Mezzanine
 - Unique Drivers for Hardware I/Fs

Two Board Implementation

CPU (PowerPC Processor)

Performs CPU Functions

Manages Video Board

Video Capture Board & Mezzanine

4 Video Input, 1 Output

2 Audio Input & Record

Video Capture/Framing

Video Compression

Video Playback (1 channel)

Software Architecture

- The Requirement
 Develop an Open System (Industry Standard Real-Time
 Operating System, COTS Tools, and Standard API)
- The Conundrum
 Implementing Elements for Which There is No Standard
- The Solution
 - Use Standard Architecture and COTS/ROTS
 - Use VxWorks Real-Time Operating System
 - Use Tornado Development Tools
 - Use OpenGL and Other Standards
 - Develop and Integrate Unique I/F Drivers Only As Required
- Open System Effect
 - Mostly Open System
 - Minimized Uniqueness
- OR Develop a Standard API to Driver Uniqueness from Application

Summary

- Open Systems Are Highly Desirable
 - They allow insertion or extraction of either hardware or software functions with a minimal of design and integration risk and cost
- Typical Approach to Achieving an Open System
 - Use an Industry Standard Architecture (VME, cPCI, PC/104-Plus)
 - Use an Industry Standard Operating System (VxWorks)
 - Use Industry Standard Tools (Tornado)
 - Use COTS/ROTS Boards and Devices
- Unique Military Requirements Create A Conundrum
 - New Functionality
 - Unique Interfaces
 - Harsh Environment
 - Size, Weight, Power, and Cost Constraints
- A Solution for Military Equipment
 - Use and Open System 'Core'
 - Minimize the Unique Elements in the System
 - Mitigate the Uniqueness

Do the Best You Can, You Can Get Very Close to an Open System

